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Mesoscopic Physics 
Wave nature of electrons becomes important 

Webb et al., 1985 

Yacoby et al. 1995 
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Graphene: single and bilayer 

@Jian Li unige  
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Length scales  

 Phase coherence length  

 Elastic scattering length  

Inelastic scattering length  

Geometrical dimension  

Macroscopic conductor  

 Mesoscopic conductor  

(size of conductor) 

(distance an electron travels before suffering a phase change of   

(mean free path between elastic scattering events) 

(distance an electron travels before loosing an energy kT) 

) 

Beenakker and van Houten, 1991 
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Physics versus geometry  

Mesoscopic physics = « Between mircoscopic and macroscopic » 

Nano physics = on the geometrical length of a nanometer 

Definition of mesoscopic physics is based on physical length scales. 

In contrast, nanophysiscs, is a definition based on a geometrical length  

scale.  
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Lecture contents 

Conductance from  transmission 
1. Single channel conductors 

2. Multichannel conductors   

3. Multiprobe conductors    (omitted)                

Thermoelectric transport   
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1. Two-terminal coductors  

3. Multiprobe conductors (omitted)  

  4. Magnetic field symmetry (omitted)   

2. Thermoelectrics  of a quantum dot  



Conductance from Transmission 

1. Single channel conductors  
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Conductance from scattering theory 

 Fermi energy right contact 

 applied voltage  

Heuristic discussion 

transmission probability  

reflection probability  

Fermi energy left contact 

incident current 

density 

density of states 

 independent of material !! 


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« Landauer formula » 



Scattering matrix 


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scattering state  

scattering matrix 

current conservation S is a unitray matrix  

In the absence of a magnetic field S is an orthogonal matrix 



Aharonov-Bohm oscillations 
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Conductance from Transmission 

  2. Two-probe multi-channel conductors  
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Multi-channel conductance: leads 

asymptotic perfect translation invariant potential 


seprable wave function 

energy of transverse motion 

  energy for transverse and longitudnial motion 

 scattering channel 

channel threshold  
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Mulit-channel conductance  

incident current in channel i 

density in channel i 

density of states in channel i 

independent of channel 

« Landauer formula » 


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 Eigen channels 

hermitian matrix; real eigenvalues  

hermitian matrix; real eigenvalues  

are the genetic code of  

mesoscopic conductors !! 


Many single channel conductors in parallel.  

All the properties we discussed for single-channel two-probe conductors apply  

equally to many-channel multi-probe conductors: in particular  

Eigen channels  14 



Quantum point contact 

gate 

gate 

van Wees et al., PRL 60, 848 (1988) 

Wharam et al, J. Phys. C 21, L209 (1988) 



Quntum point contact 

Saddle-point potential  

Transmission probability  

Buttiker, Phys. Rev. B41, 7906 (1990) 



Conductance of resonant level 

 Transmission probability oof single level  

High temperature limit  

Level width 



 Energy of resonant level  

Conductance 

Low temperature limit  



Thermoelectric Transport 
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1. Two terminal conductors  



Energy current  

     H. L. Engquist and P. W. Anderson, Phys. Rev. B24, 1151 (1981) 

Energy flux in a quantum channel: reservoirs at T1 and T2:  

Small temperature difference  

Thermal quantum (independent of electron or channel properties!!)  
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Lorentz factor (Sommerfeld theory) 



Heat current 
Heat current in perfect quantum channel, (linear response ) 

Heat current (elastic backscattering , linear response)  

Thermoelectric transport (linear response) 
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Connection with energy and electrical current  



Thermoelectric transport  
Fluxes in response to potentials  

 Current and temperature differences as driving forces 

R  resistance  

 S  thermopower  

Peltier  

thermal conductance  

 Multi-terminal expressions:  

P. N. Butcher , J. Phys.: Condensed  Matter  2, 4869  (1990).   
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Thermopower  

 zero temperature limit  

Cutler-Mott formula  

Sommerfeld integral  
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Thermopower of a QPC  
Proetto, PRB 44, 9096 (1991)  

Channel dependence  



Thermoelectric transport  
2. Thermoelectric transport of a quantum dot  
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Thermopower for resonant transmission  
P. Mani, N. Nakpathomkun, H. Linke, Journal of Electronic Materials 38, 1163 

(2009).  

Resonant transmission probability  

High temperature limit  

Level width 



Universal ! But only as long as thermal energy is small compared to 

 the level separation.  
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Thermopower for resonant transmission  

Cutler-Mott  

Low temperature limit of CM-formula  

Resonant transmission probability  

Note that this is independent of symmetry 

P. Mani, N. Nakpathomkun, H. Linke,  

Journal of Electronic Materials 38, 1163 (2009).  
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Thermopower of a multilevel dot  
C. W. J. Beenakker and A. A. M. Staring Phys. Rev. B 46, 9667 (1992) 
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Thermopower of a chaotic cavity 
S. F. Godijn, S. Möller, H. Buhmann, L. W. Molenkamp,  

S. A. van Langen PRL 82, 2927–2930 (1999)  

 
Cutler-Mott-formula 

 zero temperature limit  

   Probability distribution of the  

   thermopower of a chaotic cavity  

   one channel leads   

S. A. van Langen, P. G. Silvestrov,  

C. W. J. Beenakker,  Supperlattice and  

Microstructures, 23, 691 (1999).  
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Efficiency of a single level dot  

Efficiency  

Power  

 Heat current  

Efficency  

Current 

 High temperature limit  

Carnot efficiency is reached     

when   

Stall voltage 
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Efficiency at maximum power  
Nakpathomkun, Xu, Linke, PRB  82, 235428 (2012)  

-------   efficiency at maximum power  

  -------   maximum efficiency  

 -------   maximum power              

Maximization is with 

regards to the position of  

the resonant level position 
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Summary  

 

Brief review of scattering  approach to elctrical conductance  

Magnetic field symmetry of  conductance  

Brief review of scattering approach to thermoelectric transport  

  Power, efficiency and efficiency at maximum power   
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Thermoelectric transport through a single level dot  


